
Securing BareMetal Hardware 
at Scale


Paul	McMillan	and	Ma+	King	



Intro


• Paul	and	Ma+	are	responsible	for	pla5orm	and	
infrastructure	security	at	Oracle	Cloud	Infrastructure	

• No	discussion	of	specific	products,	features,	or	
vulnerabili@es	



This talk isn’t about


• Virtual	Machines	
• Run@me	Security	
• Laptops/Desktops	(we	assume	a	secured	datacenter)	
• TCG	
• Defending	against	hardware	implants	or	trojans	
• Malicious	vendors	



BareMetal Servers


• No	Hypervisors	or	VMs	
• Customers	run	their	own	kernel	
• Allows	low-level	access	to	
hardware	devices		
• And	firmware	interfaces	



Problem: Customers and Firmware


• Systems	have	a	wide	range	of	mutable	code	in	non-
vola@le	storage	
• Customers	can	run	firmware	update	u@li@es	
• This	can	lead	to:	
• Inconsistent	versions	across	the	fleet	
• Installa@on	of	known	buggy	firmware	
• Malicious	firmware		



Goal: Give Customers “PrisCne” systems


• No	dependencies	on	previous	(mis)use	
• Automatable	remanufacturing	process	
• Security	in	the	face	of	bugs	



Background




Server PlaForm


CPU	&
NorthBridge

NVMe

South	
Bridge

PCIe

HDD

USB

D
R
A
M

BMC



Server PlaForm


CPU	&
NorthBridge

NVMe

South	
Bridge

PCIe

HDD

USB

D
R
A
M

BMC
ME

PSP

FW BIOS



Server PlaForm


CPU	&
NorthBridge

NVMe

South	
Bridge

PCIe

HDD

USB

D
R
A
M

BMC
ME

PSP

FW BIOS

PSU

?
TPM

???

?
?



Supply Chain – Component Manufacturing




Supply Chain – PCB Manufacturing




Supply Chain – Device Assembly




Supply Chain – DesCnaCons




Supply Chain

• Hard	to	ensure	systems	arrive	with	desired	Firmware	
• Devices	some@mes	arrive	non-func@onal	
• Bugs	
• Failures	
• Bitrot	
• etc.	

• How	do	we	verify	firmware	in	the	Datacenter?	



Current SoluCons




Signed Firmware


• Vendor	signature	over	device	firmware	
• Blocks	unintended	code	from	running	

• Ensures	firmware	matches	device	
• Widely	implemented	
• Recommended	by	NIST	to	protect	firmware	



Signing LimitaCons


• Signatures	are	not	an	indica@on	of	quality	
• Updates	are	validated	by	running	firmware	
• No	provisions	for	remedia@on	
• No	indica@on	if	running	old	(vulnerable)	version	
• Must	wait	for	vendors	to	generate	and	sign	patched	
versions	



Secure Boot


• Extends	signature	checking	to	device	boot	
• ROM	checks	boot	loader,	which	checks	kernel,	etc.	

• Prevents	run@me	bugs	from	gaining	persistence	
• Common	among	restricted-use	devices	
• Examples:	game	consoles,	carrier-locked	phones	



Secure Boot LimitaCons


• Doesn’t	solve	inherent	issues	with	code	signing	
• Unable	to	sign	configura@on	data	
• No	revoca@on	mechanism	



Measurement


• Device	reports	its	own	status	
• Frequently	signed	by	a	private	key	to	prove	authen@city	

• Proves	exactly	what	code	was	loaded	
• Examples:	Google	Titan,	TPMs	



Measurement LimitaCons


• Few	devices	support	secure	measurement	
• Measurements	o]en	unstable	
• Firmware	updates	
• Configura@on	changes	
• Device	Iden@fiers:	serial	numbers,	MAC	address	



Our Challenge


• Signing	is	insufficient		

• Most	devices	do	not	offer	measurement	
	
• So	what	now?	



Recovery




Hardware Engineering Challenges


• Firmware	developers	need	to	update	firmware	when:	
• There	is	no	firmware	
• The	update	rou@nes	don’t	work	(or	exist)	
• Firmware	hangs	
• Signature	checking	is	broken	
• Hardware	features	don’t	work	



Hardware Engineering SoluCons


• Nearly	all	hardware	has	a	recovery	mechanism	
• Does	not	depend	on	current	firmware	
• Built	in	to	ROM	
• JTAG	
• Serial	Port	
• Other	proprietary	methods	

• Can	we	use	these	for	security	too?	





Recovering Firmware for Assurance


• Apply	updates	to	mutable	firmware	without	execu@ng	
unknown	code	

• Use	hardware	mechanisms	that	operate	regardless	of	
current	device	state	
• Bypass	or	halt	execu@on	of	updatable	code	



Example Recovery Process


• Enter	recovery	mode		
• Device	waits	for	new	firmware	instead	of	boo@ng	

• Supply	known	boot	loader	to	device	
• Reboot	device	
• Now	it’s	running	the	known	boot	loader	

• Do	normal	firmware	load	to	finish	upda@ng	



OperaConalizing Recovery


• Custom-built	hardware	device	to	drive	recovery	
interfaces	
• Connec@vity	to	devices	and	management	interface	

• NO	RUN-TIME	UPDATEABLE	FIRMWARE!	



Custom Hardware

Show	and	Tell	



LimitaCons


• Not	general	purpose,	customized	for	each	device	
• We	have	a	large,	homogenous	fleet	

• Requires	vendor	support	
• Needs	schema@cs,	le+er	of	vola@lity,	tooling,	etc…	

• May	overwrite	logged	data	
• No	diagnos@c	info	for	failure	analysis	

• Cabling	sucks	



LimitaCons (cont)


• Reverse	engineering	is	expensive	and	slow	
• O]en	requires	full	device	reboots	
• Challenging	on	mul@-tenant	systems	

• Impacts	component	selec@on	
• Write	cycle	limits	on	non-vola@le	storage	
• If	you	can	do	it,	so	can	a+ackers!	
• Secure	boot	helps	



Future Work




In-band Recovery


• Recover	without	the	extra	hardware	
• Recover	devices	without	host	reboot	
• Useful	for	PCI	pass-through	to	guest	VM	

• More	reliable	
• Easier	to	standardize	



DetecCon


• Be+er	device-level	Iden@fica@on/A+esta@on	
• Firmware	update	tooling	doesn’t	report	previous	
state	of	device	
• Standard	methods	to	chain	device	firmware	into	
trusted	boot	



RunCme Integrity


• LOL!	

• Requires	substan@al	changes	in	firmware	and	
hardware	development	

• If	you	have	ideas,	we’d	love	to	hear	them.	



Conclusions

• Gaining	assurance	of	running	firmware	is	hard	but	
possible	

• Common	requests	are	more	likely	to	become	reality	
• Pester	your	vendors	(this	really	works!)	

• We	are	moving	towards	a	world	where	device	
firmware	can	be	verified	



Q&A


	
• Paul	McMillan		
• @PaulM	
• Paul@McMillan.ws	

• Ma+	King	
• @syncsrc	
•  jtag@syncsrc.org	


