Securing BareMetal Hardware
at Scale

Paul McMillan and Matt King



Intro

* Paul and Matt are responsible for platform and
infrastructure security at Oracle Cloud Infrastructure

* No discussion of specific products, features, or
vulnerabilities



This talk isn’t about

*Virtual Machines
* Runtime Security

* Laptops/Desktops (we assume a secured datacenter)
*TCG

* Defending against hardware implants or trojans
* Malicious vendors



BareMetal Servers

* No Hypervisors or VMs

e Customers run their own kernel

* Allows low-level access to
hardware devices

e And firmware interfaces




Problem: Customers and Firmware

e Systems have a wide range of mutable code in non-
volatile storage

* Customers can run firmware update utilities

* This can lead to:
* Inconsistent versions across the fleet

* Installation of known buggy firmware
* Malicious firmware



Goal: Give Customers “Pristine” systems

* No dependencies on previous (mis)use
* Automatable remanufacturing process
* Security in the face of bugs



Background



Server Platform

BMC

CPU &

NorthBridge

South
Bridge

HDD

USB



Server Platform

NVMe =

PCle

BMC

CPU &

NorthBridge

South
Bridge

HDD

USB



Server Platform

NVMe ==

PCle

PSU

BMC

CPU &

NorthBridge

277
TPM

South
Bridge

HDD

USB



Supply Chain = Component Manufacturing




Supply Chain = PCB Manufacturing




Supply Chain = Device Assembly




Supply Chain = Destinations




Supply Chain

* Hard to ensure systems arrive with desired Firmware

* Devices sometimes arrive non-functional
* Bugs
e Failures
* Bitrot
* etc.

* How do we verify firmware in the Datacenter?



Current Solutions



Signed Firmware

* Vendor signature over device firmware
* Blocks unintended code from running

* Ensures firmware matches device
* Widely implemented
* Recommended by NIST to protect firmware



Signing Limitations

* Signatures are not an indication of quality
* Updates are validated by running firmware
* No provisions for remediation

* No indication if running old (vulnerable) version

* Must wait for vendors to generate and sign patched
versions



Secure Boot

* Extends signature checking to device boot
* ROM checks boot loader, which checks kernel, etc.

* Prevents runtime bugs from gaining persistence

* Common among restricted-use devices
* Examples: game consoles, carrier-locked phones



Secure Boot Limitations

* Doesn’t solve inherent issues with code signing
* Unable to sign configuration data
* No revocation mechanism



Measurement

* Device reports its own status
* Frequently signed by a private key to prove authenticity

* Proves exactly what code was loaded
* Examples: Google Titan, TPMs



Measurement Limitations

* Few devices support secure measurement

* Measurements often unstable
* Firmware updates
* Configuration changes
* Device ldentifiers: serial numbers, MAC address



Our Challenge

* Signing is insufficient
 Most devices do not offer measurement

e So what now?



Recovery



Hardware Engineering Challenges

* Firmware developers need to update firmware when:
* There is no firmware
* The update routines don’t work (or exist)
* Firmware hangs
e Signature checking is broken
* Hardware features don’t work



Hardware Engineering Solutions

* Nearly all hardware has a recovery mechanism

* Does not depend on current firmware
* Built in to ROM
* JTAG
* Serial Port
e Other proprietary methods

* Can we use these for security too?






Recovering Firmware for Assurance

* Apply updates to mutable firmware without executing
unknown code

* Use hardware mechanisms that operate regardless of
current device state

* Bypass or halt execution of updatable code



Example Recovery Process

* Enter recovery mode
* Device waits for new firmware instead of booting

* Supply known boot loader to device

* Reboot device
* Now it’s running the known boot loader

* Do normal firmware load to finish updating



Operationalizing Recovery

* Custom-built hardware device to drive recovery
interfaces

* Connectivity to devices and management interface

* NO RUN-TIME UPDATEABLE FIRMWARE!



Custom Hardware



Limitations

* Not general purpose, customized for each device
* We have a large, homogenous fleet

* Requires vendor support
* Needs schematics, letter of volatility, tooling, etc...

* May overwrite logged data
* No diagnostic info for failure analysis

* Cabling sucks



Limitations (cont)

* Reverse engineering is expensive and slow

* Often requires full device reboots
* Challenging on multi-tenant systems

* Impacts component selection

* Write cycle limits on non-vo

*If you can do it, so can attac
* Secure boot helps

atile storage

Kers!



Future Work



In-band Recovery

e Recover without the extra hardware

 Recover devices without host reboot
e Useful for PCI pass-through to guest VM

* More reliable
e Easier to standardize



Detection

* Better device-level Identification/Attestation

* Firmware update tooling doesn’t report previous
state of device

e Standard methods to chain device firmware into
trusted boot



Runtime Integrity

* LOL!

* Requires substantial changes in firmware and
hardware development

*If you have ideas, we’d love to hear them.



Conclusions

* Gaining assurance of running firmware is hard but
possible

* Common requests are more likely to become reality
 Pester your vendors (this really works!)

* We are moving towards a world where device
firmware can be verified



Q&A

* Paul McMiillan
e @PaulM
 Paul@McMillan.ws

* Matt King
* @syncsrc
* jtag@syncsrc.org




